Versionen im Vergleich

Schlüssel

  • Diese Zeile wurde hinzugefügt.
  • Diese Zeile wurde entfernt.
  • Formatierung wurde geändert.

Datum des CBS-Abzugs: 20242025-0807-01

Dieser Bericht wurde automatisiert mit R Markdown erstellt. Der pica-rs-Code für die Abfrage aller Tc-Sätze und der R-Code für die Berechnung der Ausgabetabelle können durch Aufklappen der Codeblöcke eingesehen werden.

Von allen Datensätzen mit 002@.0 == 'Tc' ohne 050C.a =^ 'GND-kein-Schlagwort' werden die Unterfelder $2 und $4 der PICA+-Felder 022P, 028P, 029P, 030P, 041P und 065P ausgelesen und die IDN-Anzahlen für alle Kombinationen der Werte {‘agrovoc’, ‘lcsh’, ‘ram’, ‘mesh’, ‘stw’, ‘thesoz’, ‘embne’, ‘nsbncf’, ‘tpro’, ‘etiras’} in $2 und {‘ftaa’, ‘ftae’, ‘ftai’, ‘ftao’, ‘ftau’, ‘ftob’, ‘ftub’, ‘ftvb’, ‘ftnu’} in $4 berechnet.

...

Codeblock
languagebash
collapsetrue
#!/bin/bash

set -euo pipefail
# set -x

# Datenformat GND - Crosskonkordanzen zu externen Vokabularen/Thesauri:
# https://wiki.dnb.de/pages/viewpage.action?pageId=263851158x/lgy6Dw

dnb_dump=/srv/aen-data/pica/T.dat

# Tc-Sätze "f bbg Tc NOT rdb GND-kein-Schlagwort*"
pica filter -s "002@.0 == 'Tc'" --not "050C.a =^ 'GND-kein-Schlagwort'" $dnb_dump -o Tc.dat

# 028P (700) - "p" - Person
# 029P (710) - "b" - Körperschaft
# 030P (711) - "f" - Konferenz
# 022P (730) - "u" - Einheitstitel
# 041P (750) - "s" - Sachbegriff
# 065P (751) - "g" - Geografikum

pica select -H "IDN, Feld, Thesaurus, Relation" "003@.0, '028P', 028P{2, 4}" \
--where "028P.4?" Tc.dat -o Tc.csv

# ohne Header anhängen
pica select "003@.0, '029P', 029P{2, 4}" --where "029P.4?" Tc.dat --append -o Tc.csv
pica select "003@.0, '030P', 030P{2, 4}" --where "030P.4?" Tc.dat --append -o Tc.csv
pica select "003@.0, '022P', 022P{2, 4}" --where "022P.4?" Tc.dat --append -o Tc.csv
pica select "003@.0, '041P', 041P{2, 4}" --where "041P.4?" Tc.dat --append -o Tc.csv
pica select "003@.0, '065P', 065P{2, 4}" --where "065P.4?" Tc.dat --append -o Tc.csv

...

Codeblock
languagenone
collapsetrue
# Crosskonkordanzen einlesen
ck <- read_csv('Tc.csv', col_types = 'cccc')

# Wertebereiche gemäß Wiki-Seiten definieren
thesauri <- read_csv('Thesauri.csv', col_types = 'cc')
relationen <- read_csv('Relationen.csv', col_types = 'cc')

# Crosskonkordanzen filtern und zählen
rslt1rslt <- ck %>%
  filter(Thesaurus %in% thesauri$Code & Relation %in% relationen$Code) %>%
  mutate(
    Thesaurus = factor(Thesaurus, 
                       levels = thesauri$Code, labels = thesauri$Thesaurus),
    Relation  = factor(Relation,
                       levels = relationen$Code, labels = relationen$Relation)
  ) %>%
  # GESAMT als Summe über alle Relationen
  rbind((.) %>% mutate(Relation = factor('GESAMT'))) %>%
  # auch alle leeren Levels jeweils mit Anzahl 0 anzeigen
  group_by(Thesaurus, Relation, .drop = FALSE) %>% 
  # jede Kombination (Thesaurus, Relation) je IDN nur einmal zählen
  summarise(n = n_distinct(IDN)) %>%
  pivot_wider(id_cols = Relation, names_from = Thesaurus, values_from = n)

# Summe
rslt2 <- data.frame(Relation = factor('GESAMT'), 
                    rslt1 %>% select(-Relation) %>% summarise_all(.funs = sum))
colnames(rslt2) <- colnames(rslt1)

# Formatierte Ausgabetabelle
rbind(rslt1, rslt2) %>% rslt %>%
  mutate_at(.vars = setdiff(colnames(.), 'Relation'), .funs = ~ formatC(
    ., format = 'd', big.mark = '.', decimal.mark = ',')) %>%
  knitr::kable(align = c('l', rep('r', ncol(.)-1)))
RelationAGROVOCLCSHRAMEAUMeSHSTWTheSozEMBNENSoggT-PROET
Äquivalenz (ftaa)90
46
48.
577
726
45
47.
244
262
40
560
103
10213.0408.6172669
exakte Äquivalenz (ftae)5.490
717
1.225
667
7996.
190
4045.
760
8357.
340
3351722363.512
inexakte Äquivalenz (ftai)5
488
717
406
745
363
3920
205
198550
3
4292.365
ODER-Äquivalenz (ftao)4
123
142
54
6665006081.411
UND-Äquivalenz (ftau)1.2932.
304
3154.
661
666
116
118
417
4151.
612
6161000
Oberbegriff-Relation (ftob)2.12700557.
888
9272.
970
9340000
Unterbegriff-Relation (ftub)1830012382
375
393
387
0000
Verwandter-Begriff-Relation (ftvb)76900113.
750
772929
933
0000
Null-Relation (ftnu)168
18
19.
379
088
19
20.
899
9410
505
503
893
8972100
GESAMT10.129
68
72.
588
213
70
74.
931
479
6
7.
852
11318.
695
83414.
443
40413.6168.
643
644757.957