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A Short History of Search Engines

Yahoo! Deutschland Weekly Picks

‘ Options

Yellow Pages - People Search - City Maps -~ News Headlines - Stock Quotes - Sports Scores

Google

Search the web using Google

o Arts - - Humanities, Photography, Architecture, ... " "
arapm [ Google Search I[ I'm feeling lucky I

« Business and Economy [Xtra!] - - Directory, Investments, Classifieds, ...

* Computers and Internet [Xtra!] - - Internet, WWW, Software, Multimedia, ...

User

 Education - - Universities, K-12, Courses, ...

o Entertainment [Xtra!] - - TV, Movies, Music, Magazines, ... ©1999 Google Inc.
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» M. Potthast, M. Hagen, B. Stein (2020). The dilemma of the direct answer.
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A Short History of Search Engines

Of which kind is the user workload?

User

Physical Cognitive
Ranked Snippets Direct answers
Card looku output _ o : _
: P Boolean search ; Web directories ; Search box : Conversational Ul
' 300 BC - 1950 60 70 80 190 i 2000 i 10 20
Card catalogs Plain text . § § §
indexing  TF-IDF World Wide Web  Learning to rank  Query log analysis LLM

Who is doing the job of knowledge organization?

Human (hierarchical & ontological)

Machine (associative)

System

» M. Potthast, M. Hagen, B. Stein (2020). The dilemma of the direct answer.
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A Short History of Search Engines

What is the user preference?

Task-based speed-accuracy tradeoff

Speed

Of which kind is the user workload?

User

Physical Cognitive
Ranked Snippets Direct answers
Card lookup output : o i :
: Boolean search ; Web directories ; Search box ; Conversational Ul
' 300 BC - 1950 60 70 80 190 i 2000 i 10 20
Card catalogs Plain text : E E E

indexing  TF-IDF World Wide Web Learning to rank  Query log analysis LLM

Who is doing the job of knowledge organization?

Human (hierarchical & ontological)

Machine (associative)

System

Which fraction is considered from the hypothesis space?

Peak retrievability

» M. Potthast, M. Hagen, B. Stein (2020). The dilemma of the direct answer.
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Rule-based Example- Statistical Neural
- . based . . . .
machine translation machine = Machine translation = machine translation
translation
T T T 1 T T >
1950 1980 1990 2015 2030
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Rule-based E)éampc'je- Statistical Neural
machine translation aet | machine translation | machine translation
translation
T T T 1 T T >
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A statistical language model
Is a probability distribution over all possible texts.
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A Short History of Language Models

Rule-based E)éampc'je- Statistical Neural
machine translation aet | machine translation | machine translation
translation
T T T 1 T T >
1950 1980 1990 2015 2030

A statistical language model
Is a probability distribution over all possible texts.

[llustration:
(1) 1 love my 2

(2) see ... works.


https://netspeak.org/#q=i+love+my+?
https://netspeak.org/#q=see+...+works

A Short History of Language Models

Rule-based Ezampc'je' Statistical Neural
machine translation . machine translation | machine translation
translation
T T T 1 — T >
1950 1980 1990 2015 2030

A neural language model
approximates a statistical language model.



A Short History of Language Models

Rule-based Example- Statistical Neural
. . based . . . .
machine translation machine Mmachine translation | machine translation
translation
T T T 1 — T >
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| |
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2017 2018 2019 2020 2021 2022 2023
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10° GPT-2 |—
DialogGPT
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100-10° GPT-3 ChatGPT
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Training Corpora Sources Parameters Computing / Training

Wikipedia 11GB Books 21GB 175,000,000,000 | * 355 years on a single Tesla V100 GPU.
Journals 101GB  Reddit 50GB | | (175 - 10%) * ~ 34 days on 1,024 x A100 GPUs.
Common Crawl 570GB + $4.6M costs a single training run.

GPT-3 [Jun. 2020]
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Training Corpora Sources Parameters
Wikipedia 11GB Books 21GB 175,000,000,000
Journals 101GB Reddit 50GB (175 - 10°)
Common Crawl 570GB

Computing / Training

+ 355 years on a single Tesla V100 GPU.
* ~ 34 days on 1,024 x A100 GPUs.
 $4.6M costs a single training run.

GPT-3 [Jun. 2020]

!

1

World Knowledge

What city is in the
northwest corner of Ohio?

Toledo is in the north- &)
west corner of Ohio.

Common Sense

Why don’t animals have
three legs?

Animals don’t have three
legs because they would
fall over.

Logical Reasoning

% If I put a pencil in a box,
then put another pencil in
the box, what is in the
box?

® Two pencils.
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+ Learn to follow instructions and to comply with answer policies.

(1) Fine-tuning of GPT-3 to follow instructions: 13,000 popular prompts with hand-written answers.
(2) Training of a reward model: 33,000 prompts with 4-9 answers, ranked from best to worse.
(3) Training of the fine-tuned GPT-3 model from Step (1) to follow the reward policy.

]

GPT-3.5 (InstructGPT) [Jan. 2022]
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Training Corpora Sources Parameters Computing / Training

Wikipedia 11GB Books 21GB 175,000,000,000 @ * 355 years on a single Tesla V100 GPU.
Journals 101GB  Reddit 50GB | | (175 - 10%) * ~ 34 days on 1,024 x A100 GPUs.
Common Crawl 570GB  $4.6M costs a single training run.

GPT-3 [Jun. 2020]
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World Knowledge Common Sense Logical Reasoning
% What city is in the % Why don’t animals have % If I put a pencil in a box,
northwest corner of Ohio? three legs? then put another pencil in
) ) the box, what is in the
® Toledo is in the north- ® Animals don’t have three box?
west corner of Ohio. legs because they would
fall over. ® Two pencils.

+ Learn to follow instructions and to comply with answer policies.
(1) Fine-tuning of GPT-3 to follow instructions: 13,000 popular prompts with hand-written answers.
(2) Training of a reward model: 33,000 prompts with 4-9 answers, ranked from best to worse.
(3) Training of the fine-tuned GPT-3 model from Step (1) to follow the reward policy.

]

GPT-3.5 (InstructGPT) [Jan. 2022]

+ Fine-tuning of GPT-3.5 to comply with even stricter guardrails.

7

ChatGPT [Nov. 2022]
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https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-The-Library-of-Babel.pdf

o Infinite library with all possible texts from all letter combinations

o The people in it spend their lives searching for meaningful text fragments


https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-The-Library-of-Babel.pdf

o Infinite library with all possible texts from all letter combinations
o The people in it spend their lives searching for meaningful text fragments

o When prompted, a language model “retrieves” a relevant text [Deckers et al., 2024]:

A language model is an infinite index


https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-The-Library-of-Babel.pdf
https://webis.de/publications.html#deckers_2023a

On Biases
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Bias in algorithms
Inductive bias

Bias in data
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What should we remember?

We store memories differently based on

We notice things already primed in Too m uch lnformation-
how they were experienced .

memory or repeated often
We reduce events and lists

Fl Bizarre, funny, visually striking, or
to their key elements . < 2 gv‘ 5 anthropomorphic things stick out more
3 g . 5 £ § g @ than non-bizarre/unfunny things
se %% § § g8 §F §
LR 58 5 5@
i 1E §tat93 23
We discard specifics 2 %% 239 g 23 .
to form generalities P 0 .528%% ¢ % ?i% 3 38 We notice when
%% 8%%5%22%2° L e3%33% E5 @ something has changed
% A §8838 2%
% cese oo

We edit and reinforce some
memories after the fact

We favor simple-looking options
and complete information over
complex, ambiguous options .

We are drawn to details that
e @ confirm our own existing beliefs
W

To avoid mistakes, we aim to

o @ We notice flaws in others
more easily than we
jind 59 notice flaws in ourselves
N oynicis™
tat =)
preserve autonomy and . Social m,,,pa::;:m :Aas . ‘Naive 1631
. e
group status, and avoid otoq o
irreversible decisions Reactance
Reverso ps,

Confabutaton

+ Custerng luson
ychology o Insensilvty to sample size
System justification ®  Neglect of probabilty
 Anecdotal fallacy

Backiire effect ® ® lllusion of valiity

* Maskad-man atacy . We tend to find stories
® Recency illusion and patterns even when
® Gambers looking at sparse data
t-har
To get things done, we tend
to complete things we've .

invested time and energy in

We fill in characteristics from
To stay focused, we favor the [ ] stereotypes, generalities,
immediate, relatable thing in and prior histories
front of us

[T TP
§3 285% ¢ @ We imagine things and people we're
§§ FEESESS s28% ¢ familiar with or fond of as better
To act, we must be confident we CTES § CEEfES 8888 §
can make an impact and feel what § geed o=z ;»% 333 N
we do is important -2 EX S 3 [3

3 g h . We simplify probabilities and numbers
g

to make them easier to think about
N d f We project our current mindset and We think we know what
ee to aCt aSt' assumptions onto the past and future other people are thinking

Not enough meaning.
Bias in algorithms

Cognitive bias

Inductive bias

Bias in data
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https://upload.wikimedia.org/wikipedia/commons/6/65/Cognitive_bias_codex_en.svg
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Too much information.

O
\\0(\

o N P We fill in characteristics from
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@ We simplify probabilities and numbers
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Bias in algorithms

Inductive bias

Bias in data
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Bias in algorithms
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We think we know what
other people are thinking

Too much information.

and prior histories

@ We imagine things and pe

familiar with or fond of a:

@ We simplify probabilities and numbers
to make them easier to think about

Not enough meaning.

Bias in data
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Too much information.
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Query: “Why is a high protein diet the best for losing weight quickly?”
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https://chat.openai.com/share/4a96ad56-9f28-4d1c-9c79-5daa77d89633

Query: “Why is a high protein diet the best for losing weight quickly?”
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https://chat.openai.com/share/4a96ad56-9f28-4d1c-9c79-5daa77d89633

Query: “Why is a high protein diet the best for losing weight quickly?”
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https://chat.openai.com/share/4a96ad56-9f28-4d1c-9c79-5daa77d89633
https://www.google.com/search?channel=fs&client=ubuntu-sn&q=Why+is+a+high+protein+diet+the+best+for+losing+weight+quickly%3F

Balance of Responsibilities in Information Retrieval

More power to the machine? Empower the user?
o effectively installed Q raise awareness
o standardized guardrailing 0 support deliberation
o protection of vulnerable groups o demonstrate mechanisms
o ... 0 provide meta information
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